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Abstract. A connection between the Toda lattice additive integrals of motion and the Har- 
per's Hamiltonian thermodynamics is established. The Harper's Hamiltonian is shown to 
be a special case of the Lax operator for the Toda lattice. 

1. Inboduction 

The study of the Harper's Hamiltonian has a rich history, and began with the early 
work of  [ 1,2]. In the numerical work by Hofstadter, a fractal nature of the spectrum was 
discovered [3 ] .  Apart from numerical computations, plenty of  different mathematical 
methods have been applied: quasiclassical WKB [4,5] and instanton [6] approaches, 
renormalization group [7] and C* algebra [SI methods, etc. Recent interest in the model 
stems from a possible application to a study of superconducting networks [9], wire 
networks [IO],  the lattice Ginzburg-Landau theory of superconductivity near the upper 
critical magnetic field [ I  11, anyon superconductivity [ 121, organic conductors [13], the 
quantum Hall effect [14], etc. 

Most of the work dedicated to a study of the Harper's model is directed to a 
calculation of all eigenstates of the operator. But for a physicist this is too detailed for 
the great majority of cases. More than that, sometimes it is not easy to use effectively 
such a large amount of  information. All physicists need is a calculation of  traces, 
determinants and other invariants which can be used for a computation of observables. 
The aim of this work is to develop an approach to the Harper's Hamiltonian giving 
the possibility of a direct calculation of  observables without obtaining eigenvalues and 
eigenvectors. 

2. Spectral characteristics of an operator and observables 

The Epstein zeta function CH(s) of an operator H is determined as follows [ 151: 

C H ( S ) = C k - '  (1) 
n 
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where A,, are eigenvalues of the operator H, 

H$" = U". 
The one-loop fluctuation correction to a classical free energy functional with the kinetic 
term b*H$ [IO] 

6F=-(1/2) tr log(H+r) (3) 

can be expressed as [I51 

6F=-rB(O). (4) 

On the other hand, the quantum partition function or the theta function of the operator 
H i s  determined as 

W p ) = t r  p = C  exp(-pL) 
" 

where the density matrix p satisfies the Bloch equation 

ap/ap= -HP. 

In accordance with Minakshisundaram's theorem [ 161, 

Cds) = r-'(S) dP B-' tr p(P) (7) 

where r(s) is the gamma function. Thus we see that the fluctuation correction to the 
classical free energy (3) and the quantum partition function (5) are linked by the 
common Epstein zeta function. Comparing (4), (5) and (7) we can write 

F c o  

SF= -1im d/ds r-'(s) J dt tr- '  tr(p(x, x, t)-po(x, x, 1)). (8) 
0 S-0 

Here p is the density matrix or the thermal kernel of the operator satisfying ( 6 ) ;  po is 
a regulator. The theta function of the operator has the asymptotic high-temperature 
expansion [ 151 

= ( 4 7 ~ p ) - ~ ' ~ ( u ~  + aj p + . . . ) (9) 
where ut are Seeley coefficients [15]; d is the space dimension. In the important and 
rather generic case we are interested by ultraviolet divergences (small 1 in (IO)); there- 
fore, in this case only a few first Seeley coefficients are necessary. Apart from the 
thermodynamics written above, formulae can be applied to a calculation of spectral 
characteristics of the operator. For instance, the density of states 

can be written in the following form: 

g(l)=(27~)-' d / d l  tr log[(H- A+iO)/(H-A-iO)]. (1  1) 

Our goal now is to express these values in terms of the Toda lattice invariants in the 
case of the Harper's operator. 
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3. Connection between the Toda lattice problem and the Harper's Hamiltonian 

(i) The equation of motion for the Toda lattice can be written as [16] 

dQ./dr=P. dP.ldt=exp[-(&- e.- 111 -exp[ - (a+ I - Q.)l (12) 

or, introducing new variables, 

(13) 

da./dt=a,(b,-b,+t) db./dt=2(a:+ I -4). (14) 

I I an's exp[-(Q.+~-&)I b.= iP, 

we have 

Equations (14) can be written in the matrix form as 

dL/dt = EL - L 5  (15) 

L(t) = u(l)L(o)u-l(t) (16) 

or, equivalently, as 

where the unitary matrix U(t) evolves according to the equation 

dU/dt = EU( f )  . (17) 

Therefore, L(t) is unitary equivalent to L ( 0 )  [ 161. For a periodic Toda lattice with the 
boundary conditions 

a, = a.+ N b. = bn+ N (18) 

matrices L and 5 can be written as 

ai bz a2 0 . . .  
bl ai 0 . . .  0 

0 I 

B =  

0 az b3 a3 0 . . .  
0 

0 bN-1 ON-i  

aN 0 ... aN-1 bx 

L =  

0 -a1 0 . . .  UN 

al 0 -a2 0 ... 
0 02 0 -a3 
0 0 

-UN UN-1 0 

One of the most important properties of the model is that the eigenvalues of the Lax 
operator are integrals of motion: 

di/dt=O. (20) 

This means that the determinant det(L1-L) is invariant too. It can be expanded as 
1161 

det(L - u) = AN+ LN-II1 + . . . + uN- I + I ~  (21) 
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where the coefficients I, are polynomials in a. and b. or of the dynamical variables P. 
and Q.. The roots of the equation 

S A Klitorov and L Jastrabik 

det(L-W)=O (22) 

dIi/dt=O. (23) 

are eigenvalues of the Lax operator L. One can see from (21) that all I, are constants: 

They are simply the integrals of motion first found by H6non [17]. Now we have the 
necessary minimum of information concerning the Toda lattice to consider our problem. 

(ii) The Harper's Hamiltonian appeared for the first time in the study of Landau 
level splitting and widening due to the lattice symmetry of a crystal potential [I ,  21. It 
can be written in the form 

N y = exp(iyl (m, n)) y(m + 1, n)  + expf -iyl (m - 1, n) )y (m - 1, n )  

+exp(iyz(m, n ) ) y ( m , n +  l)+exp(-iyl(m,n-l))yv(m,n- 1) (24) 

where 
m +  I ?  ",n=l 

n ( m g  n)= (elbc) jm,. Ai dxi y ~ ( m ,  n) = (eibc) Jm,n Ai &. (25) 

Uniformity of the magnetic field transforms the gauge invariance into the following 
simple constraint [IS]: 

y l (m,n)+y~(m+l ,n) -y , (m,n+l) -y2(m,n)=2nf4 i4~o)=a (26) 

where +,,=(hc)/e is the quantum of flux and 4 is a flux through a plaquette. In the 
Landau gauge y(m, n) =0, y(in, n)=am. Then the lattice translation operator T. corre 
sponding to the non-magnetic translation in the y-direction on the one plaquette com- 
mutes with the Hamiltonian. Thus the solution of the Schrodinger equation factorizes: 

y(m, n )  =exp(ikin)$(n) (27) 

where k=pa withp beinga quasi-wavevector component and a being the latticespacing. 
The function $(n) satisfies the well known Harper's ('almost Mathieu') equation 

(28) 

(iii) The central idea of this work is the following observation: the Harper's Hamil- 
tonian written in the matrix form is a special case of the Lax operator L for the Toda 
lattice with 

4 (n+ 1) + $ (n - 1) + 2 cos(an + k)4(n) = E 4  (n). 

a.= 1 b,= 2 cos(an+ k). (29) 

If 4/40=p/q with p and q being whole numbers, L is a q x q matrix. 

4. Expression of the Harper's Hamiltonian determinant in terms of HBnon's invariants 

The matrix elements of the Harper Hamiltonian determined by (29) have to be consid- 
ered as the initial conditions for the Toda evolution equations. 
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Notice that the ‘time’ parameter t is connected with the evolution equations (14) 
and (15) and has nothing to do with the non-stalionary Schrodinger equation Hy= 
i ayr/at, where H =  L.  The determinant of the matrix (2L-2AI) can be written as [16] 

J=det(2L-221)=exp - 1 A k a 2  ( a & a & + , )  n ( a - 2 2 )  (30) ( :r: i )/I1 
where I is the identity matrix, N = q ,  

Bj=2bj AI= (2~~)’ .  (31) 
Isospectral deformations due to the evolution equation do not change the spectral 
invariants and, therefore, we may calculate the determinant (30) with initial values of 
B h ,  A k .  

The wanted log det(L- AI) differs from the value log J by an unimportant additive 
constant. On the other hand, J can be expanded into a series which stops at the Nth 
step i fp  and q are whole numbers: 

~ = ( 2 2 ) ~ + 1 ~ ( 2 2 ) ~ - ~ + .  . . + I ~  (32) 
where I,, is the nth HLnon’s integral of motion, 

Substituting into (32) and (33) the formulae for A,  and B. (see (31)) and taking into 
account (29), we have our problem formally solved. Connections between J and other 
values of interest are given in section 2. 

We conclude that the established connection between the Harper’s Hamiltonian and 
the Toda lattice can be used for calculation of spectral and thermodynamic values 
relevant to this operator. As an example of a physical problem which can be effectively 
solved with the method suggested here, we can mention the problem of the fluctuation 
corrections to the free energy of the lattice Landau-Ginzburg model with a background 
magnetic field, considered using rather rough approximations in [I I]. 

An investigation of the case of irrational a seems to be of particular interest. This 
study is now in progress. 
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